Pengenalan Alfabet Bahasa Isyarat Amerika Menggunakan Edge Oriented Histogram dan Image Matching

Ivan Fareza, Rusdie Busdin, Muhammad Ezar Al Rivan, Hafiz Irsyad

Abstract


Sign Language is a way to communicate to people with disabilities. American Sign Language (ASL) is one among other sign languages. Sign language image would be extracted using Edge Oriented Histogram (EOH). In Content Based Image Retrieval, feature from query image will be compared to database image to find out the best matching method so three matching methods will be compared. The matching methods are earth mover distance, hausdorff distance and sum of absolute difference. The smallest distance show the strong similarity between query image and database image. Sum of absolute difference is outperformed other in case the most of relevant image can retrieved.

Full Text:

PDF

References


Elissa Rosen, “History of ASL.” 2005.

M. Nachamai, “Alphabet Recognition of American Sign Language : a Hand Gesture Recognition Approach Using Sift Algorithm,” Int. J. Artif. Intell. Appl., vol. 4, no. 1, pp. 105–115, 2013.

I. K. Timotius and I. Setyawan, “Using edge orientation histograms in face-based gender classification,” 2014 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2014 - Proc., no. November, pp. 93–98, 2014.

J. R. Pansare, K. S. Rampurkar, P. L. Mahamane, R. J. Baravkar, and S. V Lanjewar, “Real-Time Static Devnagri Sign Language Translation using Histogram,” Int. J. Adv. Res. Comput. Eng. Technol. Vol. 2, Issue 4, April 2013, vol. 2, no. 4, pp. 2–6, 2013.

F. Malik and B. Baharudin, “Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain,” J. King Saud Univ. - Comput. Inf. Sci., vol. 25, no. 2, pp. 207–218, 2013.

N. S. Sreekanth, N. K. Narayanan, and C. Bangalore, “Static Hand Gesture Recognition using Mon-vision Based Techniques,” Int. J. Innov. Comput. Sci. Eng., vol. 4, no. 2, pp. 33–41, 2017.

V. Vaithiyanathan, K. Divya Lakshmi, K. Joseph Abraham Sundar, M. Ifjaz Ahmed, V. Sangeetha, and R. Sivagami, “Evaluation of Distance Functions for the Comparison of Gradient Orientation Histograms,” Indian J. Sci. Technol., vol. 8, no. 35, pp. 1–5, 2015.

N. K. Gilorkar and M. M. Ingle, “A Review on Feature Extraction for Indian and American Sign Language,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 1, pp. 314–318, 2014.

S. Halawani, “Arabic Sign Language Translation System On Mobile Devices,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 8, no. 1, pp. 251–256, 2008.

L. B. Martinez and E. P. G. Cabalfin, “Sign Language and Computing in a Developing Country : A Research Roadmap for the Next Two Decades in the Philippines 2 . Overview of Current Trends in Automatic Analysis of Sign Language and,” 22nd Pacific Asia Conf. Lang. Inf. Comput., pp. 438–444, 2008.

Sreehari, “Sign Language and Static-Gesture Recognition using scikit-learn.” 2017.

K. Levi and Y. Weiss, “Learning object detection from a small number of examples: the importance of good features,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004, vol. 2, pp. 53–60.

N. Singh, S. Pawar, and Y. Kumar, “Efficient Face Detection Method using Modified Hausdorff Distance Method with C4.5 Classifier and Canny Edge Detection,” Int. J. Comput. Appl., vol. 123, no. 10, pp. 38–44, 2015.




DOI: http://dx.doi.org/10.28932/jutisi.v4i1.747

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal Teknik Informatika dan Sistem Informasi